

1	Equilibrium climate sensitivity increases with aerosol concentration
2	due to changes in rain efficiency
3	Guy Dagan ^{1*}
4	¹ Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University,
5	Jerusalem, Israel
6	*Corresponding author. Email: guy.dagan@mail.huji.ac.il
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 31	
31	
33	
55	

34 Abstract

35 How Earth's climate reacts to anthropogenic forcing is one of the most burning questions faced by today's scientific community. A leading source of uncertainty in 36 37 estimating this sensitivity is related to the response of clouds. Under the canonical 38 climate-change perspective of forcings and feedbacks, the effect of anthropogenic 39 aerosols on clouds is categorized under the forcing component, while the modifications 40 of the radiative properties of clouds due to climate change are considered in the 41 feedback component. Each of these components contributes the largest portion of 42 uncertainty to its relevant category and is largely studied separately from the other. In 43 this paper, using idealized cloud resolving, radiative-convective-equilibrium simulations, with a slab ocean model, we show that aerosol-cloud interactions could 44 45 significantly affect cloud feedback. Specifically, we show that equilibrium climate 46 sensitivity increases under high aerosol concentration due to an increase in the 47 shortwave cloud feedback. The shortwave cloud feedback is enhanced under high 48 aerosol conditions due to a stronger increase in the precipitation efficiency with 49 warming, which can be explained by higher sensitivity of the droplet size and the cloud water content to the CO₂ concentration rise. These results indicate a strong connection 50 51 between cloud feedback and aerosol-cloud interactions.

52 53

1. Introduction

54 Estimating Earth's equilibrium climate sensitivity (ECS), defined as the steady-state 55 global mean temperature increase for a doubling of CO₂, is considered as a first-order, fundamental milestone on the way to understanding and predicting anthropogenic-56 57 driven climate change (Sherwood et al., 2020). Decades of research have tried to 58 accurately quantify ECS, with only limited success. The most probable current ECS 59 estimates are in the range of 2.3-4.5K (Sherwood et al., 2020). The largest source of 60 uncertainty in estimating ECS is related to the response of clouds to the externally forced warming and the feedback of these changes on the climate system (Sherwood et 61 62 al., 2020; Ceppi et al., 2017; Schneider et al., 2017). Clouds strongly modulate Earth's 63 radiation budget by reflecting the incoming shortwave radiation from the sun and by 64 absorbing and re-emitting the terrestrial longwave radiation (Loeb et al., 2018). Thus, changes in the cloud macro-physical properties (such as coverage and vertical extent) 65 66 and micro-physical properties (such as liquid/ice partition or hydrometeors size) due to 67 anthropogenic-driven climate change could significantly alter the climate system's

- response (Gettelman and Sherwood, 2016; Nuijens and Siebesma, 2019; Schneider et
- 69 al., 2017).

70 An important factor in determining cloud feedback magnitude is the sensitivity of the 71 Precipitation Efficiency (ϵ) (Lutsko et al., 2021; Li et al., 2022; Lutsko and Cronin, 72 2018). ϵ quantifies the fraction of condensed water in a cloud to reach the surface as 73 precipitation. Using idealized cloud resolving simulations, it was shown that ϵ is 74 expected to increase with temperature (Lutsko and Cronin, 2018). The increase in ϵ 75 with warming was shown to be mostly driven by an increase in the efficiency with 76 which cloud condensate is converted into precipitation, while changes in the evaporation of falling precipitation was shown to play a smaller role (Lutsko and 77 78 Cronin, 2018).

79 An increase in ϵ with warming more efficiently depletes the water from the clouds, thus affecting the radiation budget. On the one hand, increase in ϵ with warming was 80 81 suggested to reduce the anvil cloud coverage and hence increase the outgoing longwave radiation (Lindzen et al., 2001; Mauritsen and Stevens, 2015), thus producing negative 82 83 feedback. On the other hand, however, it was recently shown that the longwave effect of an ϵ increase is over-compensated for by changes in the shortwave flux (Li et al., 84 85 2019), i.e., a large reduction in the cloud optical depth, driving a reduction in the 86 shortwave cooling effect of clouds, dominates the response.

The efficiency with which cloud condensate is converted into precipitation is closely 87 88 linked to the micro-physical properties of the clouds. The autoconversion of cloud droplets into rain becomes significant when liquid water amount and/or droplet radii 89 90 reach a critical threshold (Freud and Rosenfeld, 2012). An important factor influencing 91 the droplet radii (and also the liquid water amount, to some degree) is the amount of 92 available cloud condensation nuclei (CCN). Generally, an increase in aerosol 93 concentration drives an increase in CCN concentration, which results in more numerous and smaller droplets in the cloud (Twomey, 1974; Warner and Twomey, 1967). The 94 95 smaller droplets require longer time (or equivalently larger vertical distance) in the 96 clouds to grow by diffusion to the critical size enabling precipitation, thus delaying the initial warm rain formation (Rosenfeld, 2000; Dagan et al., 2015b). Therefore, aerosols 97 could affect ϵ (Khain, 2009). 98

99 In addition to the effect on rain, aerosols could modify the radiative properties of clouds,

100 by modifying the droplet concentration and size distribution (Twomey, 1974) and by

101	affecting the clouds' macro-physical properties (Albrecht, 1989; Bellouin et al., 2019).
102	These changes to the radiative properties of clouds result in radiative forcing that could
103	affect the sea surface temperature [SST (Bellouin et al., 2019)]. Using cloud-resolving
104	radiative-convective-equilibrium simulations with interactive SST, Khairoutdinov and
105	Yang (2013) showed that the surface temperature decreases by 1.5K with each 10-fold
106	increase in aerosol concentration, an effect quite comparable to a 2.1-2.3K SST
107	warming obtained in a simulation with given (low) aerosol conditions but doubled CO_2
108	concentration.
109	It has been suggested that cloud feedback and aerosol forcing are not independent of
110	each other (Mülmenstädt and Feingold, 2018; Igel and van den Heever, 2021). In

addition, the strong links between ϵ and cloud feedback and between ϵ and aerosol

concentration merit a dedicated study on the potential mutual CO₂ and aerosol effect on
clouds and thus also on ECS, which is the aim of the current study.

114

111

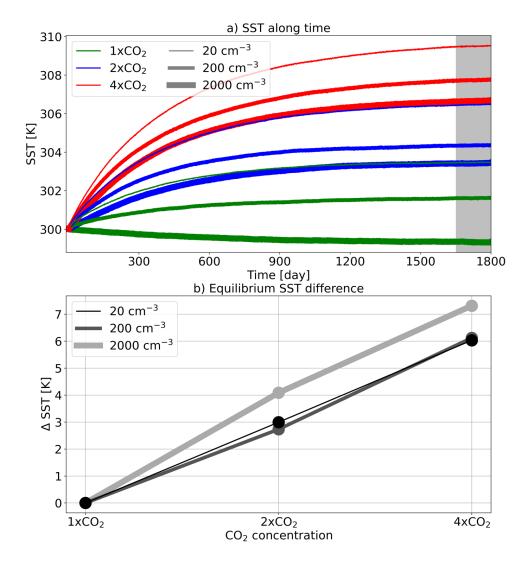
115

116 **2.** Methods

117 Model description and experimental design

The model used herein is the System of Atmospheric Modeling [SAM - (Khairoutdinov 118 119 and Randall, 2003)] version 6.11.7. Subgrid-scale fluxes are parameterized using 120 Smagorinsky's eddy diffusivity model and gravity waves are damped at the top of the 121 domain. The microphysics scheme used is Morrison et al. (2005) 2-moment bulk microphysics. The cloud droplet number concentration source assumes that the number 122 of activated CCN depends on the super-saturation (S) according to a power-law: CDNC 123 = $N_a S^k$, where N_a is the prescribed concentration of CCN active at 1 % supersaturation, 124 and k is a constant (set in this study to 0.4 - a typical value for maritime conditions). 125 126 Changes in N_a serve as a proxy for the change in aerosol concentration. Three levels of N_a are considered here, covering an extreme range of conditions – 20, 200 and 2000 127 128 cm⁻³. While this wide range of conditions is unlikely to exist at any given geographical 129 location, they are used here in order to cover the range of possible conditions at different 130 locations and to maximize the effect for establishing better physical understanding. The 131 activation of CCN at the cloud base is parameterized following Twomey (1959), using the vertical velocity and CCN spectrum parameters. The model computes cloud water 132 133 and ice-crystal effective radius for the radiation; thus, the Twomey effect (Twomey,

1977) of both liquid and ice is considered. Direct interactions between aerosols and 134 135 radiation are not considered here. The simulations are conducted in a radiative-convective-equilibrium (RCE) mode and 136 137 generally follow the RCEMIP (RCE model inter-comparison project (Wing et al., 138 2018)) small-domain instructions (but with interactive SST and changes in the CO2 and aerosol concentration). The simulations were performed on a square, doubly periodic 139 140 domain. In this case, we want to avoid the effect of convective self-aggregation on ϵ ; 141 thus, the domain size is set to 96x96 km², which was shown to be small enough to 142 prevent convective self-aggregation (Muller and Held, 2012; Lutsko and Cronin, 2018; Yanase et al., 2020). The horizontal grid spacing is set to 1km and 68 vertical levels are 143 used, between 25m and 31km, with vertical grid spacing increasing from 50m near the 144 145 surface to roughly 1km at the domain top. A time step of 10s is used, and radiative fluxes are calculated every 5 min using the CAM radiation scheme (Collins et al., 2006). 146 The output resolution for all fields is 1h. The incoming solar radiation is fixed at 551.58 147 Wm⁻² with a zenith angle of 42.05° (Wing et al., 2018), producing a net insolation close 148 to the tropical-mean value. Convection is initialized with a small thermal noise added 149 150 near the surface at the beginning of the simulation. The initial conditions for the simulations are as in Wing et al. (2018). 151 152 Greenhouse gases are varied for three different levels: pre-industrial level (280 PPM, 153 1xCO₂), 2 times pre-industrial level (2xCO₂) and 4 times pre-industrial level (4xCO₂). As in the case of the aerosol concentrations, the large range of CO_2 conditions covered 154 155 here are used to examine the clouds' sensitivity to greenhouse gas concentrations under 156 a wide range of conditions. Nine different simulations, with all possible combinations 157 of N_a and CO₂ concentrations, were conducted.


In all simulations, the SST is interactive and predicted by a slab ocean model (SOM). 158 159 The SOM's mixed layer depth is set to 5m, which represented a compromise between a 160 relatively deep layer ($\geq 10m$), which reduces SST noise (Khairoutdinov and Yang, 161 2013), and a relatively shallow layer (\ll 1m), which requires a shorter computation time for equilibrium (Romps, 2020). As in Romps (2020), the SOM is cooled at a rate of 112 162 Wm⁻² in order to ensure that the simulations with 1xCO₂ are kept at around the initial 163 SST of 300K (Fig. 1). Each simulation was run for 1800 days, which is sufficient for 164 reaching close to equilibrium (the surface energy imbalance is $\leq 0.1 \text{Wm}^{-2}$ in all 165

- 166 simulations during the last 150 days). The last 150 days of each run are used for
- 167 statistical sampling (gray shading in Fig. 1).

168

170Figure 1. a) the sea surface temperature (SST) along time for the different simulations171conducted under different aerosol and CO_2 concentrations. The gray shaded area is172referred to as equilibrium conditions. b) Change in equilibrium SST due to a change in173 CO_2 concentration (compared to the $1xCO_2$ case of each aerosol concentration), for the174different aerosol concentrations (the different curves).

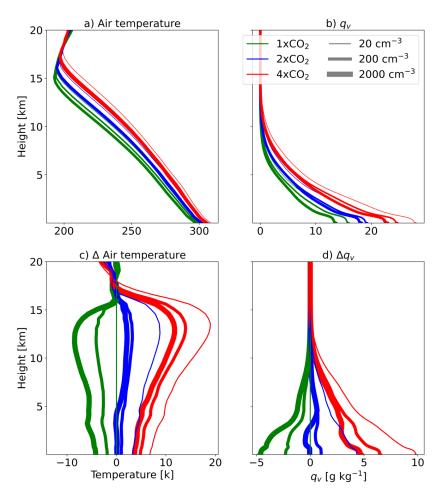
- 175
- 176

177 **3. Results**

178 Figure 1 presents the SST of the different simulations along time (panel a) and the 179 change in the equilibrium SST with the CO_2 concentration for the different N_a cases 180 (panel b). As expected, the equilibrium SST (gray shading in Fig. 1a) increases with the 181 CO_2 concentration and decreases with N_a concentration. However, the rate of increase in equilibrium SST with CO_2 concentration increases under extremely high N_a 182 183 concentrations (2000 cm⁻³), compared with the low and medium N_a concentrations (20 and 200 cm⁻³, respectively - Fig. 1b). Calculating the average ECS based on the three 184 combinations available for each N_a condition [2xCO₂-1xCO₂, 4xCO₂-2xCO₂ and 185 186 $(4xCO_2-1xCO_2)/2$], demonstrates that it increases with N_a from 3.0K at the lowest N_a to 3.7K at the highest N_a (i.e., a 23% increase – Table 1). 187

188

189	Table 1. Average equilibrium climate sensitivity (ECS), cloud-feedback parameter (λ_{cloud}),			
190	hydrological sensitivity (η), and change in precipitation efficiency ($\Delta\epsilon$) of the three			
191	combinations available for each N _a condition [2xCO ₂ -1xCO ₂ , 4xCO ₂ -2xCO ₂ and 4xCO ₂ -			
192	1xCO ₂]. For the calculation of the average ECS, the difference between 4xCO ₂ and 1xCO ₂			
193	is divided by 2. The rest of the quantities are normalized by the SST change between the			
194	relevant simulations.			
	$N_{\rm c}$ [cm ⁻³] ECS [K] $\lambda_{\rm clust}$ [W m ⁻² K ⁻¹] n [% K ⁻¹] $\Lambda_{\rm c}$ [% K ⁻¹]			


N_a [cm ⁻³]	ECS [K]	$\lambda_{cloud} [W m^{-2} K^{-1}]$	$\eta \ [\% \ \mathrm{K}^{-1}]$	$\Delta \epsilon \ [\% K^{-1}]$
20	3.0	-0.45	3.8	1.2
200	3.1	-0.38	4.3	1.3
2000	3.7	-0.08	4.6	2.7

195

Figure 2 presents the time and domain mean vertical profiles of temperature and water 196 197 vapor mixing ratio (q_y) in the different simulations (panels a and b) and their difference from the simulation with the lowest N_a and CO_2 concentrations (panels c and d). It 198 199 demonstrates, as expected, that the vertical profile of air temperature is set by the surface temperature (increases with CO_2 concentrations and decreases with N_a) with an 200 201 amplification of the change at the upper troposphere, as the profiles follow the moist adiabatic lapse-rate. It also shows that q_c increases with the temperature, as expected 202 203 (Held and Soden, 2006).

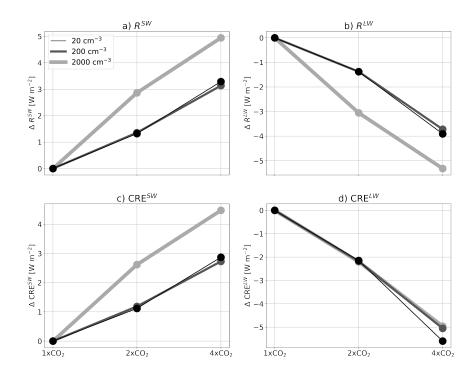
205

Figure 2. Time and domain mean vertical profiles of air temperature and water vapor mixing ratio (q_v) in the different simulations (a and b) and how they differ from the simulation with the lowest N_a and CO₂ concentrations (panels c and d).

209

210

In order to understand the increase in ECS with N_a , we next examine the top-ofatmosphere (TOA) energy budget. Figure 3 presents the change in the net shortwave and longwave TOA energy gain (R^{SW} and R^{LW} , respectively) with the CO₂ concentration for the different N_a conditions. In addition, Fig. 3 presents the change in the cloud radiative effect (CRE) with increasing the CO₂ concentration, where CRE is computed by subtracting the clear-sky from the all-sky TOA radiative fluxes ($R-R_{clear-sky}$), again for the shortwave and longwave separately (CRE^{SW} and CRE^{LW},



218	respectively). Figure 3a and b demonstrates that under equilibrium conditions R^{SW}
219	increases, while R^{LW} decreases with the CO ₂ concentration. However, the rate of change
220	in both R^{SW} and R^{LW} is much faster under the high N_a conditions than under the low
221	and medium N_a conditions. The trend in CRE ^{SW} under the different N_a conditions (Fig.
222	3c) resembles the trend in R^{SW} , suggesting that the clouds' response dominates the
223	changes in the TOA shortwave fluxes. $\mbox{CRE}^{\mbox{\tiny LW}},$ on the other hand, decreases at a similar
224	rate with CO ₂ concentration for the different N_a conditions (Fig. 3d). Thus, the different
225	decrease rates in R^{LW} with CO ₂ concentration for the different N_a conditions (Fig. 3b)
226	must be driven by clear-sky changes (specifically, the plank and the lapse-rate
227	feedbacks – see Fig. 2 above).
228	In Table 1 above, we estimate the average cloud radiative feedback ($\lambda_{cloud})$ as the change
229	in CRE with increasing surface temperature, i.e., $\lambda_{cloud} = dCRE/dT$, for the different N_a
230	conditions. The table shows that λ_{cloud} becomes less negative with the increase in N_a ,
231	leading to higher climate sensitivity. The differences in the values of λ_{cloud} between the
232	different N_a conditions is mostly derived from the shortwave part of the spectrum (Fig.
233	3).
~~ .	

- 234
- 235

236

Figure 3. The change in the net top-of-atmosphere energy gain (R) in the shortwave (a) and in the longwave (b), and the change in the cloud radiative effect (CRE) in the shortwave (c) and in the longwave (d), due to a change in the CO₂ concentration (compared to the 1xCO₂ case of each aerosol concentration), for the different aerosol concentrations (the different curves).

242

Thus far, we have seen that the ECS increases with N_a (Fig. 1 and Table 1) and that this 243 increase can be explained by changes in λ_{cloud} (Table 1) and specifically in CRE^{SW} (Fig. 244 3). To understand the changes in the cloud properties driving the changes in λ_{cloud} , and 245 246 hence also in ECS, under the different N_a conditions, in Fig. 4 we present the change in cloud liquid water path (CWP), ice water path (IWP), rain water path (RWP) and cloud 247 fraction (CF) with increasing CO₂ concentrations for the different N_a conditions. The 248 figure shows that the CWP decreases with the CO2 concentrations at a much faster rate 249 (about 3 times faster) under the highest N_a conditions compared to the low and medium 250 251 N_a conditions (Fig. 4a). The changes in the IWP, on the other hand, are about an order 252 of magnitude smaller than the changes in CWP and are not consistent in sign for the 253 different N_a conditions (Fig. 4b). The RWP increases with the CO₂ concentrations at a 254 slightly faster rate (about 20% faster) under the highest N_a conditions compared to the

- low and medium N_a conditions (however the response is non-monotonic with N_a Fig. 4c). The CF decreases with the CO₂ concentrations, at a similar rate for the different N_a
- $257 \qquad \text{conditions (about 1.5\% decrease in CF for each doubling of the CO_2 concentrations -}\\$
- 258 Fig. 4d).
- 259 The faster decrease in CWP with CO_2 concentrations under high N_a conditions drives the faster increase in CRE^{SW} as the clouds become less opaque in the shortwave. We 260 note that the difference in CRE^{SW} trend under different N_a conditions could not be 261 explained by the minor differences in the CF trends. In addition, the small differences 262 263 in the IWP between the different N_a conditions are consistent with the small differences in the CRE^{LW} seen above. The general increase in RWP with CO₂ concentrations is 264 consistent with an increase in rain efficiency with warming (Lutsko and Cronin, 2018), 265 266 as elaborated below.
- 267
- 268

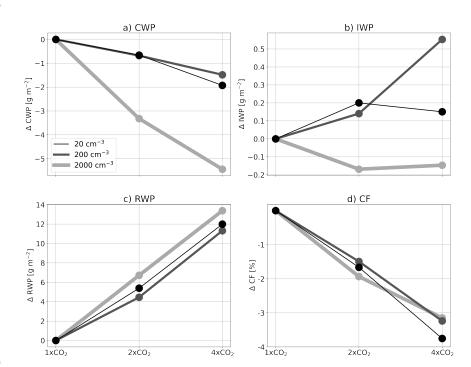
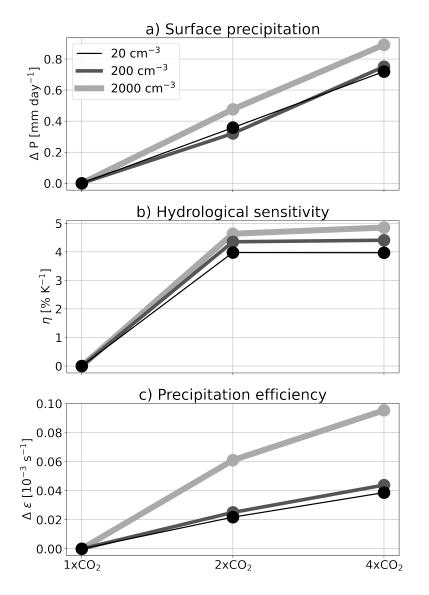


Figure 4. The change in: a) cloud liquid water path (CWP), b) ice water path (IWP, c) rain water path (RWP), and d) cloud fraction (CF) due to a change in the CO₂ concentration (compared to the 1xCO₂ case of each aerosol concentration), for the different aerosol concentrations (the different curves).



274	Figure 4 suggests that the largest difference in the cloud response to CO_2 under different
275	N_a conditions is due to changes in CWP. The higher sensitivity of CWP to CO ₂
276	concentration under higher N_a conditions can explain the higher λ_{cloud} and thus also the
277	larger ECS. Hence, the question arises: What causes the faster reduction in CWP with
278	CO_2 concentration under high N_a conditions? A major sink for CWP is via precipitation.
279	Hence, in Fig. 5 we present the change in the mean surface precipitation rate, the
280	hydrological sensitivity (η - the rate of change in the surface precipitation per 1K
281	increase in surface temperature) and the precipitation efficiency (ϵ - calculated
282	following Li et al. (2022) as the ratio of surface precipitation-to-condensed water path,
283	i.e., CWP+IWP+RWP). As expected, the surface precipitation increases with CO ₂ (i.e.,
284	η is positive) and so does ϵ (Lutsko and Cronin, 2018). This is true for all N_a conditions.
285	However, the rates of increase in surface precipitation and ϵ with CO ₂ concentration
286	are higher under the highest N_a conditions (see also Table 1). We note that the larger
287	rate of increase in surface precipitation under the highest N_a conditions is not solely due
288	to the higher surface temperature increase, as η also increases with N_a .
289	The much larger (more than double- Table 1) rate of increase in ϵ with the CO ₂
290	concentration under the highest N_a conditions depletes the cloud water more efficiently
291	from the atmosphere, leading to a faster reduction in CWP with CO_2 concentration (Fig.
292	4), which in turn leads to higher λ_{cloud} and ECS. The faster increase in RWP with CO ₂
293	concentration under the highest N_a conditions presented in Fig. 4c is consistent with
294	this explanation.
205	

- 295
- 296
- 297

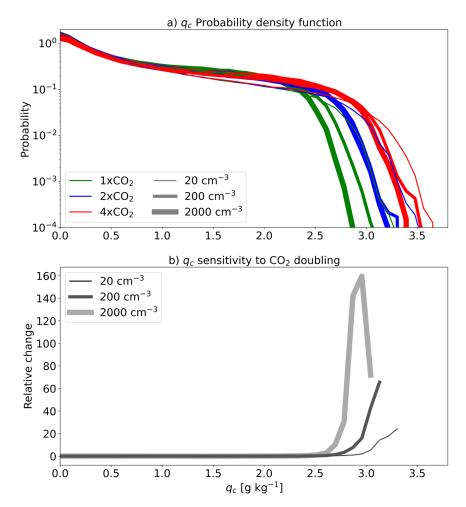
298

Figure 5. The change in: a) surface precipitation, b) hydrological sensitivity (η), and c) precipitation efficiency (ϵ) due to a change in the CO₂ concentration (compared to the 1xCO₂ case of each aerosol concentration), for the different aerosol concentrations (the different curves).

The last open question is why ϵ increases faster with CO₂ concentration under the highest N_a conditions. The increase in ϵ with warming was shown to be mostly driven by an increase in the efficiency with which cloud condensate is converted into

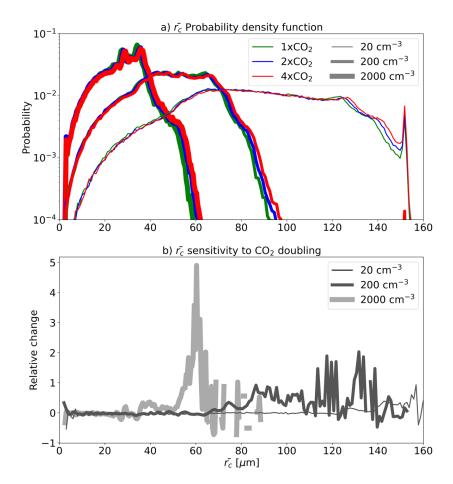
307 precipitation (Lutsko and Cronin, 2018). As was mentioned in the introduction, the 308 conversion of cloud condensate into precipitation (or autoconversion of cloud droplets) 309 becomes significant only when liquid water amount and/or droplet radii reach a critical 310 threshold (Freud and Rosenfeld, 2012). To understand the faster ϵ increases with CO₂ concentration under the highest N_a conditions, we present the histograms over the 311 312 domain and time (during the last 150 days of the simulations based on 3D output in 1hour resolution) of liquid cloud droplets mixing ratio (q_c – Fig. 6) and mean cloud 313 droplet radii ($\overline{r_c}$ – Fig. 7) around the height of the maximum in cloud droplet effective 314 315 radii (1950m) and its mean sensitivity to doubling of CO_2 concentration for each N_a condition. 316

Figure 6 demonstrates that the cut-off of the q_c distribution (the mixing ratio for which the probability density function starts to decrease sharply) increases with the CO₂ concentration and decreases with the aerosol concentration. However, the sensitivity of the relatively large q_c with CO₂ concentration is significantly larger under high aerosol concentrations compared to the lower aerosol concentrations (Fig. 6b). The larger relative increase in high q_c promotes the autoconversion process and hence enhances ϵ , more under high aerosol concentrations than under low aerosol concentrations.


324 Figure 7 demonstrates, in line with expectations, that N_a has a strong effect on $\overline{r_c}$. In addition, it shows that under all N_a conditions, $\overline{r_c}$ increases with the CO₂ concentration. 325 This could be explained by the increase in the availability of water vapor (Fig. 2), 326 327 which, for a given N_a conditions, enable larger diffusional growth of the droplets. Here 328 again, the highest N_a conditions demonstrate the largest sensitivity of $\overline{r_c}$ to CO₂ concentration, especially at the right-hand side of the distribution (Fig. 7b). This could 329 330 be explained by the fact that under these high N_a conditions, the cloud droplet growth 331 is primarily limited by the availability of water vapor, as large number of droplets 332 compete for the available water vapor (Koren et al., 2014; Dagan et al., 2015a; Reutter et al., 2009). Similarly to the q_c case, the larger relative increase in the relatively large 333 334 droplets promotes the autoconversion process and hence enhances ϵ , more under high aerosol concentrations than under lower aerosol concentrations. 335

336

337



339

Figure 6. Probability density functions (PDF) of the cloud droplet mixing ratio (q_c) for the different simulations (a), and the mean sensitivity of the q_c PDF to a doubling of the CO₂ concentration based on the three combinations available for each N_a condition [2xCO₂-1xCO₂, 4xCO₂-2xCO₂ and (4xCO₂-1xCO₂)/2] (b), calculated for the heights around which the cloud droplet effective radii reach a maximum (1950m) and using 3-D files output every hour of the last 150 days of the simulations. Note the logarithmic scales for the yaxes of a.

348

Figure 7. Probability density functions (PDF) of cloud droplet mean radii ($\overline{r_c}$) for the different simulations (a), and the mean sensitivity of the $\overline{r_c}$ PDF to a doubling of the CO₂ concentration based on the three combinations available for each N_a condition [2xCO₂-1xCO₂, 4xCO₂-2xCO₂ and (4xCO₂-1xCO₂)/2] (b), calculated for the heights around which the cloud droplet effective radii reach a maximum (1950m) and using 3-D files output every hour of the last 150 days of the simulations. Note the logarithmic scales for the yaxes of a.

356

357 4. Summary and conclusions

The role of clouds in a climate-change is manifested by two pathways: (1) effects of anthropogenic aerosol on clouds, and (2) feedback that clouds exert on the changing climate. These two pathways are usually studied separately, and even by different

- 361 scientific communities. In this paper, we demonstrate that the two pathways are closely
- 362 linked to each other and should be examined concurrently.
- Using long, idealized RCE simulations over a small domain with a slab ocean model,
 we demonstrate that the ECS, i.e., the increase in surface temperature under equilibrium
- conditions due to doubling of the CO₂ concentration, increases with the aerosol concentration. The ECS increase is explained by a faster increase in precipitation efficiency with warming under high aerosol concentrations, which more efficiently depletes the water from the cloud and thus is manifested as an increase in the cloud feedback parameter. The precipitation efficiency increases faster under high aerosol concentration due to a higher sensitivity of the relatively high liquid water mixing ratios and the relatively large mean droplet sizes to a CO₂ concentration increase.

The results presented here are based on idealized simulations over a small domain.
Under more realistic conditions, other processes, not included here, that could affect
the precipitation efficiency and hence the general trend will be introduced. In particular,

convective self-aggregation could be of interest as, while it is inhibited in the small
domain used here, it was shown to affect precipitation efficiency (Lutsko et al., 2021)
and to be affected by aerosols (Nishant et al., 2019). Other processes that should be
accounted for in future research include the presence of large-scale circulation and
direct aerosol radiative effects (Dagan et al., 2019; Dingley et al., 2021).

The results presented here suggest a strong connection between cloud feedback and aerosol-cloud interactions. The regulation of aerosol emissions is known to be more effective than the effort to reduce greenhouse gas emissions. This, together with the short lifetime of aerosols in the atmosphere, has resulted in a reduction in the value of the global mean aerosol effective radiative forcing in recent years (Quaas et al., 2022). If the conclusions of this paper hold under higher levels of complexity (e.g., large-scale circulation, convective self-aggregation, etc.) this might mean that the reduction in

soo enculation, convective sen aggregation, etc.) and might mean that the reduction in

387 global aerosol emissions could lead to a reduction in ECS, which could compensate, at

least partially, for the reduction in the negative forcing induced by aerosols (Quaas et

al., 2022; Bellouin et al., 2019), thus providing yet additional motivation for reducing

aerosol emissions globally.

391

392 Code availability

393 SAM is publicly available at: http://rossby.msrc.sunysb.edu/~marat/SAM.html

395 Data availability

- 396 The data presented in this study will become publicly available via zenodo prior to
- 397 publication.

398

399 Author contributions

400 GD carried out the simulations and analyses presented and prepared the article.

401

402 Competing interests

- 403 The authors declare that they have no conflict of interest.
- 404

405 Financial support

406 This research was supported by the Israeli Science Foundation Grant (1419/21).

407

408 **5.** References

- Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science (New
 York, NY), 245, 1227, 1989.
- 411 Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher,
- 412 O., Carslaw, K., Christensen, M., and Daniau, A.-L.: Bounding aerosol radiative
 413 forcing of climate change, Reviews of Geophysics, 2019.
- 414 Ceppi, P., Brient, F., Zelinka, M. D., and Hartmann, D. L.: Cloud feedback mechanisms
 415 and their representation in global climate models, WIREs Climate Change, 2017.
- 416 Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D.
- 417 L., Briegleb, B. P., Bitz, C. M., Lin, S.-J., and Zhang, M.: The formulation and
- atmospheric simulation of the Community Atmosphere Model version 3 (CAM3),
 Journal of Climate, 19, 2144-2161, 2006.
- 420 Dagan, G., Koren, I., and Altaratz, O.: Competition between core and periphery-based
- 421 processes in warm convective clouds-from invigoration to suppression, Atmospheric
- 422 Chemistry and Physics, 15, 2749-2760, 2015a.
- 423 Dagan, G., Koren, I., and Altaratz, O.: Aerosol effects on the timing of warm rain
- 424 processes, Geophysical Research Letters, 42, 4590-4598, 10.1002/2015GL063839,
 425 2015b.
- 426 Dagan, G., Stier, P., and Watson-Parris, D.: Contrasting response of precipitation to
 427 aerosol perturbation in the tropics and extra-tropics explained by energy budget
 428 considerations, Geophysical Research Letters, 2019.
- Dingley, B., Dagan, G., and Stier, P.: Forcing convection to aggregate using diabatic
 heating perturbations, Journal of Advances in Modeling Earth Systems, 13,
 e2021MS002579, 2021.
- 432 Freud, E., and Rosenfeld, D.: Linear relation between convective cloud drop number
- 433 concentration and depth for rain initiation, Journal of Geophysical Research:
- 434 Atmospheres (1984–2012), 117, 2012.
- 435 Gettelman, A., and Sherwood, S.: Processes Responsible for Cloud Feedback, Current
- 436 Climate Change Reports, 2, 179-189, 2016.

- 437 Held, I. M., and Soden, B. J.: Robust responses of the hydrological cycle to global 438 warming, Journal of Climate, 19, 5686-5699, 2006.
- 439 Igel, A. L., and van den Heever, S. C.: Invigoration or Enervation of Convective Clouds
- 440 by Aerosols?, Geophysical Research Letters, 48, e2021GL093804, 2021.
- 441 Khain, A. P.: Notes on state-of-the-art investigations of aerosol effects on precipitation:
- 442 a critical review, Environmental Research Letters, 4, 015004 (015020 pp.)-015004
- 443 (015020 pp.), 10.1088/1748-9326/4/1/015004, 2009.
- 444 Khairoutdinov, M., and Yang, C.-E.: Cloud-resolving modelling of aerosol indirect 445 effects in idealised radiative-convective equilibrium with interactive and fixed sea
- 446 surface temperature, Atmospheric Chemistry and Physics, 13, 4133-4144, 2013.
- 447 Khairoutdinov, M. F., and Randall, D. A.: Cloud resolving modeling of the ARM 448 summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities, Journal
- 449 of the Atmospheric Sciences, 60, 2003.
- 450 Koren, I., Dagan, G., and Altaratz, O.: From aerosol-limited to invigoration of warm 451 convective clouds, science, 344, 1143-1146, 2014.
- 452 Li, R., Storelvmo, T., Fedorov, A. V., and Choi, Y.-S.: A positive IRIS feedback:
- 453 Insights from climate simulations with temperature-sensitive cloud-rain conversion, 454 Journal of climate, 32, 5305-5324, 2019.
- 455 Li, R. L., Studholme, J. H., Fedorov, A. V., and Storelvmo, T.: Precipitation efficiency constraint on climate change, Nature Climate Change, 12, 642-648, 2022. 456
- 457 Lindzen, R. S., Chou, M.-D., and Hou, A. Y.: Does the earth have an adaptive infrared 458 iris?, Bulletin of the American Meteorological Society, 82, 417-432, 2001.
- 459 Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., Liang, L.,
- 460 Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the earth's radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 461
- 462 data product, Journal of Climate, 31, 895-918, 2018.
- 463 Lutsko, N., Sherwood, S. C., and Zhao, M.: Precipitation Efficiency and Climate 464 Sensitivity (Invited Chapter for the AGU Geophysical Monograph Series" Clouds and 465 Climate"), 2021.
- Lutsko, N. J., and Cronin, T. W.: Increase in precipitation efficiency with surface 466
- warming in radiative-convective equilibrium, Journal of Advances in Modeling Earth 467 468 Systems, 10, 2992-3010, 2018.
- 469 Mauritsen, T., and Stevens, B.: Missing iris effect as a possible cause of muted
- hydrological change and high climate sensitivity in models, Nature Geoscience, 8, 346, 470 471 2015.
- 472 Morrison, H., Curry, J., and Khvorostyanov, V.: A new double-moment microphysics 473 parameterization for application in cloud and climate models. Part I: Description, 474
- Journal of the atmospheric sciences, 62, 1665-1677, 2005.
- 475 Muller, C. J., and Held, I. M.: Detailed investigation of the self-aggregation of 476 convection in cloud-resolving simulations, Journal of the Atmospheric Sciences, 69, 477 2551-2565, 2012.
- 478 Mülmenstädt, J., and Feingold, G.: The Radiative Forcing of Aerosol-Cloud 479 Interactions in Liquid Clouds: Wrestling and Embracing Uncertainty, Current Climate
- 480 Change Reports, 4, 23-40, 2018.
- 481 Nishant, N., Sherwood, S. C., and Geoffroy, O.: Aerosol-induced modification of
- 482 organised convection and top-of-atmosphere radiation, npj Climate and Atmospheric 483 Science, 2, 1-10, 2019.
- 484 Nuijens, L., and Siebesma, A. P.: Boundary Layer Clouds and Convection over
- 485 Subtropical Oceans in our Current and in a Warmer Climate, Current Climate Change 486 Reports, 1-15, 2019.

- 487 Quaas, J., Jia, H., Smith, C., Albright, A. L., Aas, W., Bellouin, N., Boucher, O.,
 488 Doutriaux-Boucher, M., Forster, P. M., and Grosvenor, D.: Robust evidence for
 489 reversal in the aerosol effective climate forcing trend, Atmospheric Chemistry and
 490 Physics Discussions, 1-25, 2022.
- 491 Reutter, P., Su, H., Trentmann, J., Simmel, M., Rose, D., Gunthe, S., Wernli, H.,
- 492 Andreae, M., and Pöschl, U.: Aerosol-and updraft-limited regimes of cloud droplet
- formation: influence of particle number, size and hygroscopicity on the activation of
 cloud condensation nuclei (CCN), Atmospheric Chemistry and Physics, 9, 7067-7080,
- 495 2009.
- 496 Romps, D. M.: Climate sensitivity and the direct effect of carbon dioxide in a limited-497 area cloud-resolving model, Journal of Climate, 33, 3413-3429, 2020.
- Rosenfeld, D.: Suppression of rain and snow by urban and industrial air pollution,
 Science, 287, 1793-1796, 10.1126/science.287.5459.1793, 2000.
- 500 Schneider, T., Teixeira, J., Bretherton, C. S., Brient, F., Pressel, K. G., Schär, C., and
- Siebesma, A. P.: Climate goals and computing the future of clouds, Nature ClimateChange, 7, 3-5, 2017.
- 503 Sherwood, S., Webb, M. J., Annan, J. D., Armour, K., Forster, P. M., Hargreaves, J. C.,
- 504 Hegerl, G., Klein, S. A., Marvel, K. D., and Rohling, E. J.: An assessment of Earth's
- climate sensitivity using multiple lines of evidence, Reviews of Geophysics, 58,e2019RG000678, 2020.
- Twomey, S.: The nuclei of natural cloud formation part II: The supersaturation in
 natural clouds and the variation of cloud droplet concentration, Geofisica pura e
 applicata, 43, 243-249, 1959.
- Twomey, S.: Pollution and the planetary albedo, Atmospheric Environment (1967), 8,
 1251-1256, 1974.
- Twomey, S.: The influence of pollution on the shortwave albedo of clouds, Journal ofthe atmospheric sciences, 34, 1149-1152, 1977.
- Warner, J., and Twomey, S.: The production of cloud nuclei by cane fires and the effect
 on cloud droplet concentration, Journal of the atmospheric Sciences, 24, 704-706, 1967.
- 515 on cloud dioplet concentration, Journal of the atmospheric Sciences, 24, 704-700, 1907.
 516 Wing, A. A., Reed, K. A., Satoh, M., Stevens, B., Bony, S., and Ohno, T.: Radiative-
- 510 ving, A. A., Reed, R. A., Saton, M., Stevens, B., Bony, S., and Onno, T. Radiative
 517 convective equilibrium model intercomparison project, Geoscientific Model
 518 Development, 793-813, 2018.
- 519 Yanase, T., Nishizawa, S., Miura, H., Takemi, T., and Tomita, H.: New critical length
- 520 for the onset of self-aggregation of moist convection, Geophysical Research Letters,
- 521 47, e2020GL088763, 2020.
- 522